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Introduction

• Classical/neural synthesis of control systems
Linear control theory
Artificial neural networks

• Adaptive critics
Learn in real time
Cope with noise
Cope with many variables
Plan over time in a complex way
...

Action network takes immediate control action

Critic network estimates projected cost

• Adaptation takes place during every time interval:



Motivation

• Provide full envelope control

• Multiphase learning
Initialization (off-line), motivated by linear controllers
On-line training, during full-scale simulations or aircraft testing

• On-line training improves performance w.r.t. linear controllers: 
Differences between actual and assumed dynamic models
Nonlinear effects not captured in linearizations

• Potential applications:
Incorporate pilot's knowledge into controller a-priori
Uninhabited air vehicles control
Aerobatic flight control
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Full Envelope Control!
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Linear Control Design

Linearizations:
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Linear control 
design:

• Longitudinal
• Lateral-directional

Aircraft Flight Envelope {V, H}: 
(γγγγ = µµµµ = ββββ = 0)



Proportional Integral Linear Control Law

Quadratic cost function:

Minimizing Linear Control Law:
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Linear Proportional-Integral Controller

Closed-loop stability: ( ) ,ct xx → ( ) 0~ →ty( ) ,ct uu →

yc = desired output,  (xc,uc) = set point.
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Proportional-Integral Neural Network Controller
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Role of Forward Neural Network
in the Control System

uc
NNF

yc

a

• NNF represents commanded trim control settings,
uc = NNF(yc,a),.

scheduled by a, throughout full flight envelope:
OR = {V, H, γ, µ, β}

• Trim settings commanded by yc are defined as
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One Layer Sigmoidal Forward Neural Network

q - inputs, s - nodes, m - outputs

Output: z = NN(p)
Input: p

Input weight matrix:  
W ≡ {wij}, (s × q)
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Training set:  
{yc

k, ak, uc
k}k = 1, ..., p

Output weight matrix:  
V ≡ {vij}, (m × s)

Input bias:  d
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Forward Neural Network Initialization Equations

Training set:  
{yc

k, ak, uc
k}k = 1, ..., pz(yc

k, ak) = uc
k, ∀ k

Requirements:

Initialization equations:

In matrix form, assuming ni
k is known:
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Forward Neural Network Initialization Equations Solution

• No solution iff rank (S | ulc) ≠ rank (S)
• Unique solution iff rank (S | ulc) = rank (S) = s
• An (s – r)-family of solutions iff rank (S | ulc) = rank (S) = r < s

Existence of solution:

Suggested methods of solution:

• Reduce number of nodes until s = r, i.e., eliminate columns in S
• Exact algebraic solution where s is chosen equal to p (square S)
• Approximate solution using pseudoinverse, vl = SPIulc, with s < p:
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Initialized Full-envelope Forward Neural Network

Full-envelope forward neural network (NNF):
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Actual Full-envelope Aircraft Trim Map

Trim settings (from f[xc(t), uc(t), p(t)] = 0) vs. V (m/s) and H (m):

Throttle (%) Stabilator (deg) Aileron (deg)

Rudder (deg) Pitch Angle (deg) Turn Rate (deg/s)

constant γ, µ, and β



Full-envelope Neural Network Modeling of Aircraft Trim Map

Forward neural network output vs. V (m/s) and H (m):

Throttle (%) Stabilator (deg) Aileron (deg)

Rudder (deg) Pitch Angle (deg) Turn Rate (deg/s)

Error ~ O(10-5)
constant γ, µ, and β



Proportional-Integral Neural Network Controller: 
Action and Critic Networks Implementation

: On-line Training

yc x(t)

∫
˜ y t( )

+

+

+

_

u(t)uc

+

_

xc

ys(t)

e

a

NNF

SVG

CSG

AIRCRAFT

)(~ tx

( ) ( )[ ]tts uxh ,

λλλλ = δV/δxa

ξξξξ(t)
NNA

NNC

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ,~~~2
2

1
lim ττττττττ daaatV

t

ft

TT

ft
∫ ++

∞→
−= uRuuMxQxx

)(~ tu



Adaptive Critic Implementation: 
Action Network On-line Training

Train action network, at time t, holding the critic parameters fixed

[Balakrishnan and Biega, 1996]

NNC

Aircraft Model
• Transition Matrices
• State Prediction

Utility Function
Derivatives

NNA

x(t)

a

Optimality
Condition

NNA Target

Target Generation



Adaptive Critic Implementation:
Critic Network On-line Training

Train critic network, at time t, holding the action parameters fixed

[Balakrishnan and Biega, 1996]

NNC
(old)

Utility Function
Derivatives

NNA

x(t)
a

NNC Target

Target Generation

Aircraft Model
• Transition Matrices
• State Prediction

NNC

Target Cost 
Gradient
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Example: Full-envelope Large-angle Aircraft Maneuver

Command-input time history:
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Summary and Conclusions

• Adaptive critic flight control design:

Objective: improve global aircraft control performance

• Achievements:
Systematic approach for designing nonlinear control systems
Innovative neural network (off-line and on-line) training techniques

• Results: improved performance during full-envelope large-angle maneuvers

! Algebraic pre-training based on available linear control knowledge
! On-line training during simulations (full envelope, severe conditions)

Future Work:

Continue testing and implement constrained adaptive critic designs!


